
INTERRUPTS

There are 2 methods for communicating
between the microcontroller and the external
system:

� POLLING
� INTERRUPTS

POLLING

� In this method, microcontroller accesses at the exact time
interval the external device, and gets the required information.

� The time periods is determined by user. In fact, you can say that,
when using the method - polling, the processor must access the
device itself and request the desired information that is needed to
be processed.

� In fact we see that in this method, there is no independence for
the external systems themselves. They depend on the
microcontroller. The processor may only access the external
device and get from it the information needed.

� The main drawback writing program that uses this method is a
waste of time. The micro needs to wait and review whether a
new information arrived.

INTERRUPTS

� Interrupt is the signal sent to the micro to mark the
event that requires immediate attention.

� Interrupt is “asking" the processor to stop to perform
the current program and to “make time” to execute a
special code.

� In fact, the method of interrupt defines the option to
transfer the information generated by internal or
external systems inside the micro by them self!
Once the system has finished the task imposed on
it, the processor will be notified that it can access
and receive the information and use it.

Interrupt Sources

� External hardware devices are sending interrupts to microcontroller
in order to receive “the treatment”.

� The micro can send to itself an interrupt as a result of executing the
code to report the failure in the process.

� In the multi-processor system, processors can send interrupts to
each other as communication between them, for example for the
division of work between them.

� There are two types of interrupts: software interrupts and hardware
interrupts.

Software Interrupts

� Software interrupts come from a program that runs
by the processor and “request” the processor to stop
running the program, go to make a interrupt and
then to return to continue to execute the program.

� Example: Procedure - when there is a procedure
call, the processor stops the execution of the
program, jumps to the place in memory that
reserved for a procedure – executes the procedure
and only then returns back to the program and
continues to execute.

Hardware Interrupts

� The hardware interrupts are sent to the microcontroller by
external hardware devices.

� Some of the interrupts can be “blocked” = (masking) by Interrupt
Enable bit (IE). When the interrupt is blocked the micro “does not
see“ the request for an interrupt, therefore won’t be available to
execute it.

� The “blocked” interrupt won’t be executed till the “block” is
removed.

� There are interrupts that can not be “blocked”. These are used to
report on critical hardware issues, such as the drop of voltage.
We want an immediate response from the microcontroller to
these kind interrupts, without the ability to ignore them.

PIC16F877 Interrupts

Interrupts with low priority

Interrupts with
high priority

PIC16F877 Interrupts cont

� The microcontroller has 14 interrupt sources

� XXIF is an interrupt flag that shows the result that we are getting
from an interrupt.

� XXIE is an interrupt enable bit that is used to enable or “block”
the interrupt.

� The interrupts on the left side of the figure (previous slide) are
low priority and all of them together can be “blocked” by enabling
bit interrupt PEIE = 0.

� We can determine whether or not to allow the system to address
the interrupts. This is done by using Global Interrupt Enable bit
GIE.

PIC16F877 Interrupts cont

� EEIF - Write Complete Flag Bit. This flag bit appears in the
memory components such Data EEPROM and Flash
Program Memory located inside the PIC. In order to begin
writing again into memory the flag should be reset first -
EEIF=0. EEIF must be cleared by software.

� PSPIF – This interrupt flag appears when we are utilizing
PORTD. PORTD operates as an 8-bit wide Parallel Slave
Port (PSP), or microprocessor port, when control bit
PSPMODE (TRISE<4>) is set. Interrupt flag PSPIF is
designed to inform that the operation of reading/writing
from/to PORTD is ended.

To be continued

